Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Recent Adv Drug Deliv Formul ; 17(4): 300-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37974444

RESUMO

BACKGROUND: Mometasone Furoate (MF) is a corticosteroid (glucocorticoid) used to treat eczema, psoriasis, allergies, and rash on the skin; also used to reduce itching, redness, and swelling (inflammation). It has been reported that the bioavailability of MF is less than 11% when given via the nasal route. Encapsulating the drug in niosomes can improve the active pharmaceutical ingredient's bioavailability by enhancing both physical and biological stability. OBJECTIVE: The goal of the study is to develop, a non-ionic surfactant-based vesicular system, by loading mometasone furoate, and introducing it into a gel-based formulation by utilizing an appropriate gelling agent, and performing its evaluation. METHODS: The niosome vesicle was prepared by vacuum rotary evaporation method (Thin film hydration method). Gel was prepared using the dispersion method and in-vitro drug diffusion studies using Franz-diffusion cells. RESULTS: According to the results of the experiments conducted for the study, Mometasone Furoate niosomal gel was prepared utilizing Mometasone Furoate niosomes that were made using the thin film hydration process, Cholesterol, and Span 60, and loaded in various amounts of Carbopol as a geling agent. The niosomes' zeta potential was found to be -24 mV, showing that the formulation is stable. The polydispersity index (PDI) was found to be 0.409 and the average size of niosomes to be 252.7 nm. The performance of the gel of the optimized formulations containing 2% Carbopol showed in vitro diffusion for 7 hours and an increased flux rate as compared to the plain MF. CONCLUSION: The experiments carried out during the study led to the conclusion that the thin-film hydration method was suitable for the formation of the MF-niosomes by using Span 60 and Cholesterol (2:1). The gel formulation containing 2% Carbopol indicated better in vitro diffusion following the Higuchi model across all niosomal gel formulations. Niosomal gel can be regarded as the best vesicular carrier for the efficient distribution of mometasone furoate via the transdermal route.


Assuntos
Portadores de Fármacos , Lipossomos , Humanos , Absorção Cutânea , Furoato de Mometasona , Vesícula , Colesterol
2.
Pharm Nanotechnol ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37694777

RESUMO

BACKGROUND: Benzoyl peroxide is a peroxide with antibacterial, irritating, keratolytic, comedolytic, and anti-inflammatory properties. When benzoyl peroxide is applied topically, it breaks down and releases oxygen, which kills the germs of Propionibacterium acnes. Benzoyl peroxide's irritating impact causes an increase in epithelial cell turnover, which causes the skin to peel and aids in the healing of comedones. Treatment for acne vulgaris involves the use of benzoyl peroxide. OBJECTIVE: The research is aimed at studying the formulation of Microsponge gel preparation of benzoyl peroxide by using Carbopol 934 as a gelling agent and evaluation of microsponge gel formulation for its physicochemical properties. METHODS: Microsponges of Anti-acne agent benzoyl peroxide drug were prepared by quasi-emulsion method, and in-vitro drug release using a suitable membrane model using a simple diffusion cell. RESULT: Prior to drying, the microsponge was filtered and rinsed using distilled water. Formulation containing benzoyl peroxide and Eudragit RS100 with a ratio of 1:4 showed a high 87.5% drug content and 78.20 % yield. The drug content of the microsponge gel was found to be 84%. Microbiological study on S. aureus was conducted by the cylinder cup method and found good results. The in-vitro diffusion of microsponge formulations was sustained for 8 hours. The drug release rate for Eudragit RS-100 was reported to be 88.87% after 8 hours based on the polymer: drug ratio (4:1). CONCLUSION: The quasi-emulsion solvent diffusion method was used to successfully prepare benzoyl peroxide microsponges using Eudragit RS100, Ethyl Cellulose, and HPMC K4M as polymers. The formulations with the highest medication concentration were made with the porous polymer Eudragit RS100.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...